Ligand Exchange Kinetics of Tetrahedral Chlorocobalt(II) Species by ³⁵Cl Nuclear Magnetic Resonance

By R. E. GENTZLER and T. R. STENGLE

(Department of Chemistry, University of Massachusetts, Amherst, Massachusetts)

and C. H. LANGFORD*

(Department of Chemistry, Carleton University, Ottawa, Canada)

Summary Ligand exchange kinetics in nitromethane of the $CoCl_3$ (pyridine)⁻ and $CoCl_4^{2-}$ species provide a probe into the mechanism of exchange in tetrahedral complexes.

RELATIVELY little is known about the mechanisms of ligand substitution in tetrahedral metal complexes of the more labile sorts.¹ A significant cause of this gap is the lack of data on the kinetics of halide exchange in species that are chiefly to be characterized by the presence of halide ligands.² We report on kinetics of the exchange of ³⁵Cl between bulk solution chloride and chlorocobalt(11) complexes observed in nitromethane solution by ³⁵Cl n.m.r. transverse relaxation-time measurements.

Visible absorption spectra of CoCl_4^{2-} and related tetrahedral and octahedral complexes are known.³ Nitromethane solutions containing CoII, excess of tetraethylammonium chloride, and pyridine have visible spectra indicative of an equilibrium between CoCl_4^{2-} and CoCl_3py^- (py = pyridine). The method of Newton and Arcand⁴ permits analysis of the spectra to give the equilibrium quotient for conversion of CoCl_4^{2-} into CoCl_3py^- and the extinction coefficient of CoCl_3py^- . The equilibrium quotient is 0.50 ± 0.05 at 25.0° . Knowledge of this quotient allows calculation of the distribution among species for interpretation of kinetic experiments.

In the absence of pyridine, $\operatorname{CoCl}_4^{2-}$ is the only Co^{II} species in solutions containing $\operatorname{Im-Et}_4\operatorname{NCl}$. The ³⁵Cl linewidth in these solutions is 24 Hz, independent of the Co^{II} concentration. The absence of concentration-dependent line-broadening implies that Cl⁻ exchange is too slow to result in the averaging of the n.m.r. signals from free and bound chloride.⁵ Variable-temperature measurements indicate line-width narrowing with increasing temperature much like that observed for the chloride ion in the bulk phase in the absence of Co^{II}. An upper limit of 100 sec⁻¹ is placed on the exchange rate constant under these high Cl⁻ conditions.

Upon addition of pyridine to solutions of $CoCl_4^{2-}$ and Cl^{-} in MeNO₂, formation of $CoCl_3py^{-}$ is indicated in the visible spectra. ³⁵Cl n.m.r. spectra of these solutions show significant line broadening which must be associated with chloride exchange reactions of $CoCl_3py^{-}$. This line broadening leads to a maximum line-width of about 300 Hz at 1·3 $\times 10^{-2}$ M-Co^{II} and 5 M-pyridine. It depends on both the Co^{II} and pyridine concentrations of the solutions. According to standard arguments,⁶ this line broadening (shortened transverse relaxation times) can be assigned to chemical exchange by noting that there is a significant decrease in line-width as temperature is increased. The relation,

$$1/T_{20\rm bs} = 1/T_{2\rm A} + P_{\rm M}/\tau_{\rm M}$$

may be applied to solutions dilute in Co^{II} . In this equation, T_{20bs} is the observed transverse relaxation time derived from the observed line-width,⁶ T_{2A} is the relaxation time for

chloride in the bulk solution environment, $P_{\rm M}$ is the probability that a chloride is in the co-ordination sphere of the metal ion, and $1/\tau_{\rm M}$ is the rate constant for exchange between the bulk solution and the co-ordination sphere of the Co^{II} ion. Assuming, on the evidence of pyridinefree solutions, that all exchange is taking place through the CoCl₃py⁻ species, values of $1/\tau_{\rm M}$ for this species may be obtained as a function of pyridine and chloride concentration with the aid of visible spectral data. The Figure

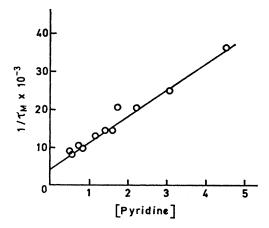


FIGURE. Dependence of ³⁵Cl exchange rate on pyridine concentration.

shows the values for 1*m*-chloride as a function of pyridine concentration. The Figure supports a rate law for chloride exchange of the form:

$$rate = [CoCl_3py^-](k_1 + k_2[py])$$

where k_1 is 4.5×10^3 sec⁻¹ and k_2 is 7.1×10^3 M⁻¹ sec⁻¹ at 25°. Variation of chloride concentration shows k_1 to be, in fact, a pseudo-first-order rate constant dependent upon chloride concentration and properly expressed as 4.5×10^3 M⁻¹ sec⁻¹. Thus, there are two paths for chloride exchange, one chloride-dependent and the other pyridine-dependent.

There is a simple but by no means certain mechanistic interpretation of the present results. It would suggest that the substitution reactions of $CoCl_3py^-$ are both associative in character passing through a five-co-ordinate transition state. The pyridine-dependent pathway may be explained by the "slow" formation of $CoCl_2py_2$ which reacts rapidly with Cl^- as would be required by the failure to observe $CoCl_2py_2$ as an equilibrium component of these mixtures. Of course, intermediates (as opposed to transition states) of five-co-ordination cannot be excluded. But, the small difference in reactivity of Cl^- and pyridine toward $CoCl_3py^$ suggests that bond formation is not predominant and tends to argue against an intermediate of higher co-ordination number. On the other hand, reactivity increases along the series $CoCl_4^{2-} < CoCl_3py^- < CoCl_2py_2$ which corresponds to approach to the ligand arrangement about CoII which favours octahedral co-ordination. It seems likely from

these results that the lability of the tetrahedral species is correlated with their tendency to form complexes of higher co-ordination number.

(Received, July 13th, 1970; Com. 1120.)

¹C. H. Langford and T. R. Stengle, Ann. Rev. Phys. Chem., 1968, 19, 193.

² W. D. Horrocks, jun. and L. H. Pignolet, J. Amer. Chem. Soc., 1968, 90, 922; S. S. Zumdahl and R. S. Drago, *ibid.*, 1967, 89, 4319; Inorg. Chem., 1968, 7, 2162; L. H. Pignolet, D. Forster, and W. D. Horrocks, jun., *ibid.*, p. 828.

- ⁴ D. A. Fine, J. Amer. Chem. Soc., 1962, 84, 1139.
 ⁴ T. Newton and G. Arcand, J. Amer. Chem. Soc., 1953, 75, 2449.
 ⁵ T. J. Swift and R. E. Connick, J. Chem. Phys., 1962, 37, 307.
 ⁶ T. R. Stengle and C. H. Langford, Coordination Chem. Rev., 1967, 2, 349.